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10.1 Introduction of the Tumor Microenvironment (TME)

Chimeric antigen receptor T (CAR-T) cell therapies show promising efficacy in
leukemia and lymphoma [1]. However, CAR-T therapy does not demonstrate effi-
cacy in solid tumors due to the complex milieu in solid cancers, i.e., the tumor
microenvironment (TME), which hampers the tumoricidal activity of CAR-T
cell [2, 3]. TME is a complicated niche consisting of tumor cells, myeloid-
derived suppressor cells (MDSCs) [4, 5], tumor-associated macrophages (TAMs)
[6, 7], exhausted T cells [8], immunosuppressive non-cellular components such as
cytokines and extracellular matrix (Fig. 10.1) [9–11].

TME contributes to cancer progression and relapse [2, 12]. The presence
of tumor-associated MDSCs such as TAMs, neutrophils, and dendritic cells is
strongly associated with the failure of cancer immunotherapy. MDSCs play a
pivotal role in the invasion and migration of cancer cells. For example, MDSCs
interact with cancer stem cells to mediate the immunosuppressive repertoire to
CAR-T therapy [4, 13, 14].

Preclinical experiments showed that CAR-T cells became dysfunctional after
trafficking into solid tumors [15]. CAR-T cells in TME increased expression
of immune-suppressive molecules such as diacylglycerol kinase and Src homol-
ogy region 2 domain-containing phosphatase-1(SHP-1), programmed cell death
protein 1 (PD-1), T cell immunoglobulin, and mucin-domain containing 3 (TIM-
3), Lymphocyte-activation gene 3 (LAG-3), and natural killer cell receptor 2B4.
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Fig. 10.1 Liver tumor microenvironment. In TME, tumor cells release cytokines that recruit
myeloid-derived suppressive cells including monocytes, macrophages, dendritic cells, and neu-
trophils. T cells are exhausted and lose their antitumor function in TME

Moreover, the dysfunctional T cells could be restored when they were iso-
lated from TME [16], which indicates that TME plays a crucial role in CAR-T
immunotherapy.

Here we describe factors and cytokines in the immune-suppressive TME. TGF-
β signaling represses Type 2 helper T (Th2) cells and fosters tumor growth by
angiogenesis [17]. TGF-β dominant cancers enrich anti-inflammatory macrophage
signatures, consistent with an immunosuppressive TME [18]. TGF-β exhausts
cytotoxic T (Tc) cells by inducing the expression of PD-1 and TIM-3, differen-
tiates CD4+ T cells to regulatory T cells (Tregs), and inhibits the expression of
granzyme and perforin in NK cells [19]. IL-4 fosters tumor progression through
upregulating anti-apoptotic genes such as Bcl-xl and cFLIP in tumor cells [20].
IL-4 activates PI3K/Akt pathway for tumor survival and metastasis [21]. A recent
study reported that the increased expression level of Notch ligand (DLL4) and
receptor (NOTCH2) were responsible for immune suppression of human fetal liver
and hepatocellular carcinoma [22]. In line with these results, Notch pathway acti-
vation induces IL-4 secretion and polarizes macrophages to immunosuppressive
TAMs [23].

10.2 Tumor-Associated Macrophages in TME

TAMs play a key role in TME via tumor growth, immunosuppression, invasion,
and metastasis (Fig. 10.2) [6, 24]. In the following, we are going to introduce how
TAMs regulate TME.
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Fig. 10.2 Properties of tumor-associated macrophages. The repertoire of tumor-associated
macrophages facilitates tumor progression in the TME. (1) Mucin1 induces the proliferation of
TAMs and expression of anti-inflammatory markers such as M-CSFR, CD206 leading to tumor
progression. (2) TAMs secrete the TGFβ and CCL8 to facilitate the recruitment of monocytes
leading to the accumulation of TAMs in TME. (3) TAMs polarize surrounding macrophages into
anti-inflammatory phenotype by IL4, IL10, or IL13. KLF4 is involved in the induction of the
anti-inflammatory phenotype. (4) FRβ+ macrophages release VEGF to promote angiogenesis of
tumor. And TGFβ reprogrammes macrophages into TAMs leading to angiogenesis progression.
(5) TAMs express the immune checkpoints such as PD-L1 and TIM3 to exhaust cytotoxic T cells.
(6) CSF1R+ TAMs enhance the invasion of myeloid cells, leading to the metastasis of tumor cells

Macrophages can be polarized to pro-inflammatory macrophages (M1 pheno-
type) induced by lipopolysaccharide of microbes or interferon γ [25]. On the
other hand, macrophages become alternatively anti-inflammatory macrophages
(M2 phenotype) induced by IL-4, IL-13, or TGF-β [26]. The pro-inflammatory
macrophages have antitumor activity, whereas the anti-inflammatory macrophages
have tumor-promoting properties.

TAMs secrete TGFβ and IL-10 to promote tumor cell growth and angiogenesis
through the PI3K pathway [27]. TAMs produce CCL8 to promote the recruit-
ment of monocytes, resulting in more macrophages becoming immunosuppressive
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TAMs [28]. Hedgehog signaling facilitates the communication of TAMs and
tumor cells leading to polarizing the macrophage toward anti-inflammatory phe-
notype. The study suggested that KLF4 and NF-kB mediate the anti-inflammatory
macrophages polarization [29].

TAMs express the folate receptor β (FRβ) and mediate immune suppression
in TME [30]. FRβ+ macrophages regulate tumor metastasis via secreting vas-
cular endothelial growth factor (VEGF) and facilitate angiogenesis in pancreatic
cancer patients [12]. Colony-stimulating factor 1 receptor (CSF-1R)-expressing
TAMs are associated with tumor progression and motility [28] due to increased
myeloid cell migration and invasion. The anti-CSF-1R antibody treatment inhib-
ited tumor growth and metastasis [31]. Golgi protein 73 (GP73) is a biomarker of
invasion and metastasis of hepatocellular carcinoma [32]. GP73 endows the TAMs
an anti-inflammatory phenotype. GP73 expression is correlated with the expression
of TIM3 and IL18Bpa, immunosuppressive markers in hepatocellular carcinoma
(HCC) [33].

Sialic acid-binding Ig-like lectin 9 (SIGLEC9), primarily expressed on mono-
cytes and macrophages, promotes cell growth through its receptor mucin 1
[34]. The study shows that SIGLEC9-mucin 1 signaling converts macrophage to
immune-suppressive TAMs by expressing PD-L1, M-CSFR, CD206, and CD163
[35, 36].

10.3 Cellular and Molecular Features that Determine
the Response to CAR-T Cells

Herein we describe immune checkpoint molecules that curb CAR-T cells
(Fig. 10.3). PD-1 expresses on the surface of the immune cell such as T cells, B

Fig. 10.3 Key immune checkpoints of CAR-T cells engagement with tumor cells. CAR-T cells
recognize the tumor cells by tumor antigen-specific scFV. The main four immune checkpoints,
CTLA-4, PD-1, TIM-3, and TIGIT, impair the CAR-T cells’ antitumor function. CTLA4 binds to
costimulation ligand B7(CD80 or CD86) leading to inhibition of T cells. PD-L1 suppresses CAR-T
by engaging with PD-1, which results in the apoptosis of CAR-T cells. TIM-3 and TIGIT sup-
press CAR-T by interaction with galectin-9 and CD155, respectively. CAR-T cells will lose their
tumor-killing function through engagement with these molecules
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cells, and macrophages. Granulocyte–macrophage colony-stimulating factor (GM-
CSF) induces PD-L1 on MDSCs curbing the immune activity of CAR-T cells
in liver metastases. The combination of anti-GM-CSF and anti-PD-L1 antibod-
ies restored the efficacy of CAR-T cells [5], which indicates the crucial role of
GM-CSF and PD-L1 in CAR-T therapy.

A recent study shows that anti-inflammatory TAMs upregulated immunosup-
pressive genes such as T cell immunoreceptor with Ig and ITIM domains (TIGIT),
CD305, and TIM-3 in HCC. These signals limit the CD8+ T cell infiltration
directed to the tumor and are associated with poor clinical prognosis 37]. The
low-level expression of PD-1 and CTLA-4 signal in the primary HCC patients
correlate with the low efficacy of anti-PD-1 and anti-CTLA-4 immunotherapy in
clinical settings [38]. Targeting TIGIT and TIM-3 combined with PD-1 or CTLA-4
may enhance the prognosis of HCC.

TIM-3 is another crucial immune checkpoint molecular [39]. A recent study
suggested that TIM-3 induces the exhaustion of CD8+ tumor-infiltrating lympho-
cytes exhausted in advanced non-small cell lung cancer (NSCLC) patients. The
high expression of TIM-3 correlated with the poor efficacy of anti-PD-1 therapy
[8]. Clinical study shows that TIM-3 is upregulated on patients’ peripheral CD4+

and CD8+ T cells [40]. Combination of anti-TIM-3 and anti-PD-1 therapy increase
IFNγ-secreting CD8+ cells and IFNγ+ TNFα effector T cells in TME leading to
improve survival of glioblastoma [41].

Nuclear receptor subfamily 4A (NR4A) activates the nuclear factor of activated
T cell (NFAT) leading to the CD8+ T cell exhaustion. CAR-T cells with NR4A
deletion reduced the expression of the PD-1 and TIM-3 and enhanced antitumor
efficacy [42].

10.4 Single-Cell Sequencing Combined with the Different
Approaches Uncovers TME

Bulk RNA sequencing informs the transcriptome of total cells on average, which
could have a bias due to the heterogeneity of cells. If some cell populations play a
pivotal role in TME but their proportion is low, bulk RNA sequencing could not be
informative [43]. Single-cell sequencing could provide a solution to decipher the
heterogeneity of cells in TME. The single-cell level perspective of TME provides
knowledge about the nature of the tumor property and may lead to innovative
cancer therapies [44].

Single-cell transcriptomes identified that Tregs accumulate in brain metastases
and resulted in T cell dysfunction by secreting IL-10 and IL-4 to shift TAMs
to an immunosuppressive phenotype in TME [45]. A small population of TAMs
interacts with CD40+CCR7+LAMP3+ dendritic cells and immune stimulation in
colorectal cancer patients. The results indicate that targeting these subpopulations
can enhance the therapy [46].

Mass cytometry analysis of renal cell carcinoma demonstrated the distribution
of PD-1, CTLA-4, and TIM-3 in the TME. This would open up the precision
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medicine of cancer immunotherapy to the patients. For example, patients predom-
inantly expressing PD-1/PD-L1 in T cells could choose anti-PD-1 therapy as a
preference [47]. Pembrolizumab, a humanized anti-PD-1 drug, shows improved
efficacy in PD-L1+non–small-cell lung cancer patients [48].

Integration of flow cytometry with immunofluorescence imaging on brain
tumors demonstrated that T cells with high expression of immune checkpoints
such as PD-1, LAG-3, TIM-3, and TIGIT were dysfunctional. Advanced brain
metastases accumulated Tregs reflecting the immune-suppressive milieu, while
early-stage glioma accumulated immature NK cells reflecting potentially immuno-
logically active state [45, 49].

10.5 Strategies of CAR-T Remodel the TME

CAR-T cell immunotherapy can be improved by applying insights from single-
cell RNA sequencing of TME. Blocking highly expressed immune checkpoint
molecules such as CTLA-4, PD-1, LAG-3, TIGIT, VISTA in CAR-T cells could
rescue them from exhaustion in TME, or rewire surrounding immune cells by
converting immunosuppressive signals to stimulant signals. Arming the CAR-T
cells with Th1 triggering cytokines such as IL-7, IL-12, IL-15, IL-18, IL-21, or
JAK-STAT signal switches the TME to a pro-inflammatory state [50]. This could
reprogram surrounding TAMs to pro-inflammatory phenotype, and subsequently
remodel the TME to an antitumor niche [51]. Moreover, conveying the T cells
with two single-chain variable fragments, i.e., bispecific T cell engagers (BiTEs)
could enhance the specificity to target tumor CAR-T cells and could be engineered
to secrete BiTEs [52]. In the following, we summarize four approaches to remodel
the TME (Fig. 10.4).

First, endowing CAR-T cells with immune checkpoint blockades allows for
CAR-T cells to be engineered and secrete anti-PD-1 scFv, which could engage
bystander T cells with antitumor activity [53]. They found that PD-1 scFV-
secreting CAR-T cells show stronger antitumor efficacy in both Raji-PD-L1
hematologic and SKOV3-PD-L1 solid tumor-bearing mouse models compared to
the single CAR-T approach due to the escort of bystander T cells from PD-1
scFV-secreting CAR-T cells.

Second, CAR-T cells can be engineered to secrete antitumor cytokines. IL-12
enhances CAR-T cell responses by sustaining T cell cytotoxicity [54]. Intra-
tumoral delivery of IL-12 in the combination with tumor-targeted CAR-T cell
therapy remodeled the TME into a pro-inflammatory state by the production of
pro-inflammatory cytokines IFN-γ and TNF, decreasing regulatory T cells and
polarization to inflammatory macrophages [55]. CAR-T cells expressing IL-7 and
CCL19 showed superior antitumor activity [56]. CAR-T cells coexpressing IL-
15 remodeled the TME by activating NK cells and reduced anti-inflammatory
macrophages [57]. CAR-T cells expressing the p40 subunit of IL-23 enhanced the
tumoricidal function by upregulating the granzyme B and downregulating PD-1
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Fig. 10.4 Strategies to remodel TME. The major strategies are blockage or depletion of immuno-
suppressive factors in the TME by CAR-T cells. (1) CAR-T cells secrete the anti-PD1 antibody,
which blocks the PD-1 signal of immune cells, leading to both protecting the CAR-T cell and
restoring the bystander T cell. (2) Secreting the immune priming cytokines such as IL12, IL18 can
boost the T cell activation and convert the TAMs to a pro-inflammatory state. (3) CAR-T cells block
the immune-suppressive cytokines such as TGFβ to improve the enrichment of cytotoxic T cells
in the TME. (4) Targeting the immunosuppressive TAMs by CAR-T. Elimination of FRβ+ TAMs
increased the infiltration of cytotoxic T cells in the TME

expression [58]. CAR-T cells releasing IL-18 showed superior efficacy of expan-
sion and antitumor by increasing the cytotoxic T cells [59], as well as reversing
the exhausted T cell to a tumoricidal Tbet high FoxO1low T cells [60].

Third, engineering CAR-T cells to antagonize immune-suppressive cytokine.
TGF-β, secreted by tumor cells, shapes an immunosuppressive TME, leading to
resistance to immunotherapy [61]. Anti-TGF-β therapy reduced the epithelial-to-
mesenchymal transition of tumor cells and improved the penetration of T cells
into tumors [62]. Selective inactivation of TGF-β1 by SRK-181 antibody facili-
tated the antitumor activity by enriching the CD8+ T cell and the memory cell in
the TME [17, 63]. Co-expression of a dominant-negative TGF-β RII with anti-
prostate specific membrane antigen CAR can be resistant to TGF-β dominant
TME in PC3-PSMA tumor-bearing mouse model [64]. Anti-TGF-β CAR-T cells
protect T cells from immunosuppressive TGF-β into an immunostimulatory phe-
notype. And what is more, Anti-TGF-β CAR-T cells can reverse the TGF-β from
an immunosuppressive molecule toward a stimulator of T cell proliferation in vitro
[65].
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Table 10.1 Key molecules determine the response of CAR-T cells

Molecular Cell type enriched Function References

Immune checkpoint

CTLA-4 (CD152) Activated T cells, Tregs Binds CD80/CD86 to inhibit
the CD28 signal leading to
inhibitory function of T cell

[69, 70]

PD-1 (CD279) T cell (Tregs), B cells,
macrophages

Bind to PD-L1 or PD-L2 [70–72]

TIM-3(CD366) T cells, myeloid cells Mediate exhaustion of
immune cells

[8, 39, 73]

LAG-3(CD223) T cells, B cells, NK cells Treg suppressive function [74, 75]

TIGIT T cells, NK cells Inhibit T cell activation [37, 76]

Cytokines or factors

TGFβ Tumor cells, leukocytes,
macrophages

Tumor cells, leukocytes,
macrophages

[17, 18]

NR4A T cells, macrophage Exhaust the CD8+ T cells [42, 77]

Fourth, targeting TAMs by CAR-T cells. Abolishing FRβ+ subpopulation of
TAMs improved T cell-mediated antitumor immune responses [66].

10.6 Prospective

Precision medicine of cancer immunotherapy will be a major goal of CAR-T tech-
nology. In this review, we discussed the molecules and cells which play key roles
in the tumor microenvironment and CAR-T therapy. Based on the findings of
single-cell sequencing in TME and CAR-T cells, we believe that the identifica-
tion of novel immune checkpoint molecules and cytokines that hinge the activity
of CAR-T cells will offer new targets in cancer immunotherapy. We summarized
the four approaches to engineer CAR-T cells to remodel the TME. The insight
from the new single-cell technologies will pave the avenue for improving CAR-
T immunotherapy to benefit the patients [67]. The spatial multi-omics can define
both the transcriptome and proteome of the TME [68]. By defining the TME, one
could engineer CAR-T cells to precisely target immune-suppressive molecules in
the TME for each patient (Table 10.1).
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