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9.1 The History of CAR-T Therapy

The invention of CAR-T cells and adoptive cell therapy (ACT) is a recent break-
through. The use of patients’ immune cells to treat cancers dated back to 1902
when Blumenthal and E. von Leyden tried to treat their cancer patients with sus-
pension derived from autologous tumor tissue culture. Some beneficial effects can
be noted in individuals but without significant disease remission [1]. ACT mainly
involves the isolation of the patient’s tumor-specific immune cells, especially T
cells, genetic modification, the proliferation of these cells in vitro, and infusion
back to the patient circulation following a lymphoid-depleting conditioning regi-
men, such as fludarabine and cyclophosphamide, for cancer treatment [2]. Three
forms of adoptive T cell transfer have been developed for cancer immunotherapy,
including tumor-infiltrating lymphocytes (TILs), T cell receptor (TCR) T cells, and
chimeric antigen receptor (CAR) T cells [3]. There are many approaches to modify
immune cells in the laboratory while CAR-T is successfully used in clinical trials.
The first use of genetically engineered T cells following the aforementioned ACT
canonical workflow for cancer treatment was reported in 1989 [4]. In the mid-
1990s, the term CAR-T was first described but the results from the preclinical and
clinical study were not satisfactory [5]. Nevertheless, as more and more modifica-
tions and improvements were applied to CAR-T design, the promising therapeutic
effect of CAR-T therapy has been demonstrated and the huge success of CAR-T
therapy emerged. FDA approved the first CAR-T therapy called tisagenlecleucel
in August 2017 for children with relapsed B cell acute lymphoblastic leukemia
treatment [1].
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CARs as synthetic receptors are generally composed of a specific domain from
a monoclonal antibody that can detect corresponding tumor antigen, a T cell activa-
tion domain usually derived from the CDζ chain, and a linker domain that bridges
the two domains. CAR-T cells can direct tumor cells automatically under the guid-
ance of the antigen detection domain, then the T cell activation domain elicits
downstream signals to activate T cells to perform antitumor response [6]. Esh-
har’s group showed that these CAR-T therapy-related synthetic receptors endow T
cells with MHC-independent target recognition compared with engineered TCRs
therapy [4, 7]. Eshhar developed the first-generation CAR-T cells targeting 2,
4, 6-trinitrophenyl (TNP)-bearing cells. They removed TCR variable regions and
replaced them with antibody variable regions based on a similar structure. These
CAR-T cells were composed of VH and VL chains derived from TNP antibody,
TCR constant domain, and transmembrane segment. Nevertheless, the results from
the initial clinical trial using the first-generation CAR-T cells did not display sat-
isfactory antitumor effects [4]. The first-generation CAR is most likely to fail to
fully engage genetically modified T cells because activation is initiated by antigen-
dependent signals through the chimeric CD3ζ chain, independent of costimulation
through accessory molecules [8]. To enhance the efficacy of CAR-T cells, many
modifications were performed, leading to the generation of the second-generation
CAR-T cells [9]. Second-generation CARs are improved by the addition of cos-
timulatory domains, such as CD28, OX40, or 4-1BB (also known as CD137),
linked with CD3ζ. Although the first-generation CARs displayed disappointing
anti-cancer efficacy in clinical trials, the second-generation CARs targeting CD19
with costimulatory domains emerged as a great success in 2011 [10, 11]. CD19
has become a nearly ideal target in CAR-T therapy for B cell malignancies. More
and more clinical trials of CAR-T targeting BCMA and CD22 have been carried
out and showed significant anti-cancer effects in multiple myeloma and acute lym-
phoblastic leukemia, respectively [3]. In 2017, FDA has already two autologous
second-generation CAR-T cells products due to the promising therapeutic effect in
patients with hematologic malignancies, tisagenlecleucel (Kymriah, Novartis) and
axicabtagene (Yescarta, Kite Pharma) targeting CD19, for the treatment of relapsed
or refractory B cell acute lymphoblastic leukemia (ALL) and relapsed or refractory
diffuse large B cell lymphoma and primary mediastinal large B cell lymphoma
[12–14]. Third-generation CARs convey two costimulatory domains together to
further enhance the antitumor activity [15, 16]. Nowadays, the fourth-generation
CARs as the newest version have emerged with additional functional domains,
which can precisely control CAR-T cell activity or further effectively enhance
CAR-T potency [17]. Diaconu et al. reported that the inclusion of inducible
pro-apoptotic protein caspase-9 (iC9) safety switch into the vector encoding the
CAR can terminate the effect of CAR-T cells in a humanized mouse model by
using chemical inducer of dimerization, which can efficiently eliminate 85%~90%
CARs once cytokine release syndrome (CRS) or severe toxicities occur [18]. Phase
I trial of fourth-generation anti-CD19 CAR-T cells with iCasp9 suicide switch
(4SCAR19) has been carried out [19]. TRUCK T cells refer to CAR-T cells with a
transgenic “payload” and belong to another type of fourth-generation CAR. These
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Fig. 9.1 Overview of CAR-T development history

TRUCK T cells can shape the tumor microenvironment by the inducible release of
transgenic immune modifiers, such as IL-12, to eliminate antigen-negative cancer
cells in the targeted lesion [20]. A dual CAR system has been developed that the
first synthetic Notch receptor detected one antigen resulting in the second inducible
CAR expression to recognize the other antigen [21]. The SUPERCAR system com-
posed of a zipCAR and zipscFv is another novel CAR system. A zipCAR has a
leucine zipper in place of antigen detection domain as the extracellular portion of
the CAR. A zipscFv has antigen detection scFv fused to a cognate leucine zipper
which can bind with leucine zipper located on the zipCAR. This design endows
CAR-T with target antigen flexibility and fine tuneability [22]. After the approval
of CAR-T therapy in 2017, increasing numbers of clinical trials have been regis-
tered and authorized to develop new products of CAR-T cell therapy. The effect
of CAR-T conveyed with a single antigen seems restricted, caused by the limited
capacity to discriminate tumor cells from healthy tissue. Researchers have started
to study and evaluate the effect of combined sensing approaches by targeting two
or more antigens (Fig. 9.1).

9.2 The Achievements and Existing Problems About CAR-T
Therapy

CAR-T cells therapy has greatly revolutionized the landscape of hematologic
malignancies treatment, especially for acute lymphoblastic leukemia (ALL) and
diffuse large B cell lymphoma (DLBCL). In relapsed or refractory cancer patients
who have no response to conventional therapy, complete responses (CRs) by CAR-
T therapy are approximately 40~60% to aggressive lymphoma and 60 ~80%
to ALL [23–25]. However, there are a significant proportion of patients who
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do not respond to this treatment regimen. The most important step for CAR-
T therapy is to choose the unique antigen based on tumor characteristics. The
unique antigen should only be expressed on tumor cells and not on other issues.
Although the CD19 CAR-T product has been approved by FDA, it can target not
only B malignant cells but also normal B cells. There continues to be a great
need for further investigation into proper unique antigen discovery [26]. Severe
toxicity, most notably CRS and neurotoxicity, is another hurdle for CAR-T ther-
apy. The frequency of severe CRS and neurotoxicity generally range from 10 to
50%. Lisocabtagene maraleucel as the third product currently being explored in
a clinical study for DLBCL treatment shows the exceptionally low frequency of
severe adverse events with the same antitumor effect as axicabtagene. In this trial,
only one patient showed Grade 3 CRS while the percentage of Grades 3 and 4
neurotoxicity was also low as 12% [25]. The syndrome of CRS includes fever,
hemodynamic instability, hypoxia, and end-organ dysfunction, which is similar
to systemic inflammatory response syndrome. FDA has approved IL-6 receptor
blocker tocilizumab as an option for CRS treatment after CAR-T therapy. Delir-
ium, aphasia, cerebral edema, and seizures are the syndrome of neurotoxicity.
Levetiracetam as a type of anticonvulsants can be used for seizure prophylaxis
and severe symptoms should be treated with corticosteroids.

CAR-T therapy has shown a promising therapeutic effect in hematologic malig-
nancies while less successful in solid tumors [27]. The reasons why CAR-T
therapy shows disappointing outcomes in solid tumors include the following fac-
tors. First, it is difficult for CAR-T cells to penetrate solid tumors owing to
the massive physical barriers surrounding tumor tissues [28]. Second, the solid
tumor forms an immune-suppressive microenvironment to hamper CAR-T antitu-
mor activity by secreting inhibitory cytokines and recruiting immune-suppressive
cells [29]. Lastly, tumor-specific antigens are highly heterogenous in a solid tumor,
which is hostile to monoclonal antibody-guided therapy [30]. How to improve the
antitumor effect of CAR-T cells therapy in solid tumor treatment is an urgent
problem that needs to be resolved.

Off-the-shelf CAR-T cells will solve the issue of donor availability. Patient-
derived autologous T cells have been the source of CAR-T. Autologous T cells
have long persistence after adoptive transfer because they can evade host allo-
geneic immune response. However, autologous CAR-T cells therapy requires a
bespoke manufacturing process for every patient after leukapheresis and display
certain disadvantages. It takes approximately 3 weeks to produce enough CAR-T
cells for autologous CAR-T cells therapy and the cost of CAR-T cells ther-
apy is inevitably expensive [6]. Moreover, T cell quality is variable for cancer
patients and is susceptible to be impaired by chemotherapeutic agents. Dysfunc-
tional T cells isolated from the immunosuppressive tumor microenvironment in
certain cancer patients lead to CAR-T cell therapy failure [31]. The application of
‘off-the-shelf’ allogeneic CAR-T cells has many potential advantages compared
with autologous T cells if the inherent barriers caused by MHC mismatch can
be resolved. Allogeneic CAR-T cells are usually derived from healthy donors
who have a robust immune function, which can overcome immune defects of
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autologous T cells from cancer patients. Moreover, harnessing allogeneic CAR-T
cells makes it possible to perform more rapid and less expensive treatment, which
also simplifies the manufacturing process and standardizes CAR-T products [32].
In addition, parts of allogeneic CAR-T cells can be stored by cryopreservation
when they have been manufactured; thus cancer patients can be simultaneously
treated with the combination of CAR-T cells targeted different antigens. Periph-
eral blood mononuclear cells (PBMCs) from healthy donors are the main source
of allogeneic CAR-T cells. In very rare cases, umbilical cord blood (UCB) can
also be the source of allogeneic CAR-T cells. Indeed, T cells from UCB have a
unique antigen-naïve condition associated with decreased incidence and severity of
graft-versus-host disease (GVHD) [33]. Nowadays, more and more studies focus
on self-renewable pluripotent stem cells such as induced pluripotent stem cells
(iPSCs) or embryonic stem cells (ESCs) as the new source of allogeneic CAR-T
cells [34]. These pluripotent stem cells can proliferate indefinitely and theoreti-
cally produce all other cells in the human body. Harnessing pluripotent stem cells
to produce therapeutic cells has been of keen interest to regenerative medicine
[35–37]. Application of iPSCs as the source can generate more homogeneous
CAR-T cells because they are produced from one clonal engineered pluripotent
cell line. Antibody-mediated graft rejection usually causes organ transplantation
failure and the presence of donor-specific anti-HLA antibodies (DSAs) appears
to impede the successful engraftment of donor cells [38]. For allogeneic CAR-T
cells transfer, the levels of DSAs as the major barrier need to be assessed carefully
[39]. The allogeneic approach leads to two major issues that need to be addressed
promptly. First, it may cause life-threatening GVHD. GVHD is the main reason
for morbidity in allogeneic CAR-T transplantation and αβ-T cells play the central
role in the pathogenesis of both acute and chronic GVHD [40–43]. In GVHD,
T cells express TNF family molecules and secret intracellular granule contents
to damage target organs [44, 45]. HLA mismatches between donor and recipient
elicit immune recognition, potentially causing graft rejection and GVHD. HLA-
restricted TCR repertoire can recognize subtle structural differences of allogeneic
HLA molecules, leading to T cell alloreactivity. The generation of allogeneic CAR-
T cells by deletion of endogenous TCR is expected to reduce the chance of GVHD
[46]. Second, these allogeneic CAR-T cells have a high chance to be eliminated
by the host immune system, hampering the antitumor effect [34]. The antitumor
effect of allogeneic CAR-T cells is determined by the initial expansion, length
of persistence, and host immune rejection. According to the first-in-human report
with CAR19-T cells manufactured using piggyBac transposon system, piggyBac
CAR19-T cells induced CAR-T cell lymphoma in two of ten patients, while the
same phenomenon has not been found with CAR19-T cells produced by viral vec-
tor [47]. This incidence indicates the needs of either lentiviral vectors for primary
T cells, or safe-harbor loci (such as AAVS1 and human ROSA26) in pluripotent
stem cell-derived T cells.

The reasons leading to CAR-T therapy failure include immune-suppressive
tumor microenvironment, tumor antigen escape, CAR-T cell exhaustion, and per-
sistence reduction. Individual conventional CAR-T cells can only recognize one
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Fig. 9.2 The structure of conventional CAR and modular CAR

specific tumor antigen because of the fixed, single-antigen targeting capacity.
Antigen loss of tumor tissue usually leads to therapy failure [48, 49]. The manu-
facturing of CAR-T cells targeting diverse tumor antigens is a promising approach
to address this issue. Compared with the traditional CAR-T system, the modular
or universal CAR-T technology utilizes a switch molecule to separate targeting
and signaling elements. An adaptor or switch element in modular CAR-T cells
replaces the antigen detection domain in conventional CAR-T cells. By choosing
specific targets, the strategy would achieve better efficiency in the cold TME. This
adaptor can be assembled with any specific tumor antigen and is required to bridge
the immunological synapse [50] (Fig. 9.2).

According to the antigen expression of the patient’s tumor, the modular CAR-T
system can be flexibly adjusted with the corresponding tumor antigen, allowing
for tailored therapy. Meanwhile, the modular or universal system can precisely
control CAR-T activity by managing the adaptor function. The ability to titrate
on adaptors enables halting of the administration of the adaptor, resulting in the
blockade of CAR-T function without the effect on other T cells (Table 9.1).

9.3 Generation of CAR-immune cells from PSCs (examples,
advances)

In 1998, the human ESCs were established by the James Thomson group for the
first time [51]. In 2006, Shinya Yamanaka discovered that mouse somatic cells are
capable to be reprogrammed to ESCs-like status by transducing four pivotal tran-
scription factors (Klf4, Oct4, Sox2, and c-Myc), these cells are termed as iPSCs
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Table 9.1 CAR-T clinical trial for solid tumors

Solid tumor Target
antigen

Target
cell

CAR Clinical trials

Glioblastoma IL13Rα2 T cell IL13Rα2 scFv-4-1-BB-CD3ζ NCT02208362

Glioblastoma EGFRvIII T cell EGFRvIII scFv-CD8
Hinge&TM-4-1BB-CD3ζ

NCT02209376

Neuroblastoma L1-CAM T cell L1-CAM scFv-CD3ζ NCT00006480

Neuroblastoma GD2 T cell GD2 scFv-CD3ζ NCT00085930

Carcinomas CD133 T cell CD133 scFv-CD8a
Hingle&TM-4-1BB-CD3ζ

NCT02541370

Colon cancer CEA T cell CEA scFv-CD8
Hinge-CD28-CD3ζ

NCT01373047

Colon cancer HER2 T cell HER2 scFv-CD8
Hinge&TM-CD28-4-1BB-CD3ζ

NCT00924287

Pancreatic cancer Mesothelin T cell Mesothelin scFv-4-1BB-CD3ζ NCT01897415

Renal cell
carcinoma

CAIX T cell CAIX scFv-CD16γ TM&Signal
domain

Phase I/II

Prostate cancer PSMA T cell PSMA scFv-CD3ζ Phase I

Seminal vesicle
cancer

MUC1 T cell MUC1 scFv-Fc-IgD Hinge-CD28
TM-4-1BB-CD3ζ

NCT02587689

Ovarian cancer FRα T cell FRα scFv-CD16γ TM&Signal
domain

Phase I

DLBCL CD19 T cell CD19 scFv-CD8a
Hinge&TM-4-1BB-CD3ζ

NCT02445248

Non-Hodgikin
lymphoma, CLL

CD19 NK
cell

iCasp9-2A-CD19
scFv-CD28-CD3ζ-2A-IL15

NCT03056339

[52]. Soon after, human iPSCs have been successfully established from fully dif-
ferentiated somatic cells, even from cells in the urine [53–55]. Human immune
cells can also be differentiated and generated from human iPSCs for immune cell
therapy, especially to treat tumors that are incurable by conventional approaches.
CRISPR/Cas9 system as the gene-editing technology can be used to modify genes
associated with immune responses during the production of human pluripotent
stem cell-derived immune cells. Notably, the primary immune cells are refractory
to gene editing and difficult to expand afterward. Compared with primary immune
cells, human pluripotent stem cells can easily be edited by transfection, and could
be an ideal source for CAR-immune cell generation. Moreover, deleting MHCs
will offer a universal source for “off-the-shelf” immunotherapeutic cell differen-
tiation [6]. More studies established hypoimmunogenic universal donor iPSCs to
avoid immune rejection after adoptive transfer [56, 57]. Employing the advantage
of amenable and expandable features, universal iPSCs were designed by deleting
immunogenic MHCs, offering the possibility to generate universal CAR-immune
cells for all patients. MHC I plays a core role in mediating immune rejection
after allogeneic transplantation. The deletion of the B2M gene leads to the loss of
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MHC I and avoid attacks from CD8+ T cells [57]. The resultant cells could be still
attacked by both macrophages and NK cells via innate immune mechanisms that
recognize and attack MHC I-null cells. Thus overexpression of immune-tolerant
genes avoids attacks from NK cells (via HLA-E single-chain dimers fused to B2M)
[58] and macrophages (via CD47). Both T cells and NK cells do not express MHC
II while macrophages do express MHC II. The expression of MHC II will provoke
attacks from CD4+ T cells and potentially challenge the development of the CAR-
macrophage approach [59]. The deletion of the CIITA gene results in the loss of
MHC II and is expected to free CAR-macrophages from the CD4+ T cells [57].
Knocking out the genes encoding TCR α and β subunits prevented the occurrence
of GVHD [60] (Fig. 9.3).

T cells play pivotal roles in the adaptive immune system and form the keystone
of cellular immunity. They can recognize foreign molecules expressed on the sur-
face of antigen-presenting cells via the interaction between TCR and MHC. CD4+

T helper cells can secret a series of cytokines to regulate other immune cell activ-
ity, such as CD8+ T cytotoxic cells, macrophages, and B cells. CD8+ T cytotoxic
cells can recognize antigens presented by MHC I or tumor common antigens with
the help of their TCRs. TCR α, β subunits together with CD3 γ, δ, ε and ζ subunits
constitute the core part of T cell signal transduction [61]. Upon binding to foreign
antigens, CD8+ T cytotoxic cells secret perforin, granzymes, and granulysin to
trigger the target cell’s apoptosis. In addition, activated CD8+ T cytotoxic cells
can also induce apoptosis of FAS-expressing cells by FAS ligand expression [62].
The differentiation protocols from human pluripotent stem cells to functional T
cells have been invented by several groups. The stromal cell line, such as the
mouse bone marrow-derived OP9 cell line, is employed for the differentiation
from human pluripotent stem cells to CD34+ hematopoietic cells. Notch signaling

Fig. 9.3 The strategy to
generate hypoimmunegenic,
universal donor PSCs
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determines the further differentiation from CD34+ hematopoietic cells to mature
functional T cells. Therefore, the OP9-DLL1 cell line was established by trans-
ducing Notch ligand Delta-like ligand 1 into the OP9 cell line. With the help of
the OP9-DLL1 cell line, human pluripotent stem cells-derived CD34hiCD43lo cells
have the potential to differentiate into CD4+ and CD8+ double-positive TCRαβ T
cells. Using OP9-DLL4 in place of OP9-DLL1 cell line for T cells differentiation
was reported to be further efficient [63, 64]. However, since TCR rearrangements
are random during in vitro differentiation, it is difficult to know their antigen
specificity and HLA restriction of these T cells. The advent of CAR technology
circumvents this limitation because CARs could redirect T cell specificity in an
HLA-independent fashion [65]. The Sadelain group successfully produced CAR-T
targeted to CD19 from iPSCs and demonstrated that these iPSCs-derived CAR-
T cells potently inhibited tumor progression. The pairwise correlation analysis
based on gene expression microarray results suggested that these iPSCs-derived
CAR-T cells were more similar to fresh or activated γδ T cells [66].The Crooks
group established PSC/ATO (pluripotent stem cells/artificial thymic organoid) sys-
tem to generate mature functional T cells from human PSCs in vitro system.
This 3D organoid system facilitates the differentiation from PSCs to embryonic
mesoderm through hematopoietic specification, and then induces T cell lineage
commitment to become naïve CD3+CD8αβ+ and CD3+CD4+ conventional T cells.
This system can also be used to produce antitumor antigen-specific CD3+CD8αβ+

T cells by the introduction of MHC I-restricted in PSCs [67]. The Nakauchi group
reported that antigen-specific CD8+ T cells from HIV-1-infected patients showed
exhausting phenotypes. However, after reprogramming to pluripotency and redif-
ferentiating into CD8+ T cells, these rejuvenated cells recovered antigen-specific
killing capacity and possessed a high proliferative activity [68]. This discovery
monumentally provides new insight and ideas for cancer immunotherapy. FT819
as a dual-targeted CAR-T candidate (CD19/CD16) made from a master iPSC cell
line is being evaluated in a clinical study [69].

NK cells belong to the innate immune system because of their lack of recep-
tors for antigen specificity and form the first line of defense against tumor cells
and virus-infected cells, and they show promising potential in cancer immunother-
apy. The activation of NK cells is decided by a balance between activating and
inhibitory signals, which does not have a somatically rearranged and antigen-
specific TCR [70]. The activating receptors of NK cells include CD94/NKG2C,
NKG2D, NKp30, NKp44, and NKp46, which recognize the different ligands
expressed on various target cells. The inhibitory receptors of NK cells include
polymorphic inhibitory killer cell immunoglobulin-like receptors (KIRs) that bind
with MHC class I [71]. The antitumor efficacy of NK cells is limited because NK
cells are highly susceptible to the immunosuppressive microenvironment. Upon
activation, NK cells localize the site of infection and perform functions by cytokine
secretion, the release of cytolytic granules, and death receptor-mediated cytoly-
sis [72]. The cytokines secreted from NK cells include IFNγ, TNFα, GM-CSF,
RANTES, and some chemokines, which can regulate the functions of the innate
and adaptive immune system [73, 74]. In addition, NK cells can lyse target cells by
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secreting perforins and granzymes [75, 76]. They can also express specific ligands
to activate death receptors on their target cells [77]. Compared with T cells, NK
cells do not depend on HLA matching to perform their function. They can be easily
transferred across HLA barriers without causing GVHD. The protocols to differ-
entiate NK cells from hPSCs have been invented. In the early protocols, mouse
stromal cells (S17 or M210) were used for hematopoietic differentiation. The dif-
ferentiated cells were selected and seeded onto EL08-1D2 stromal cells in presence
of IL-3, 7, 15, and FLT3L, then CD45+CD56+ NK cells were generated [78, 79].
The generated NK cells were able to eradicate human tumor cells by direct cell-
mediated killing and secreting antibodies. Considering the use of hPSCs-derived
NK cells in clinic for disease treatment, a xeno-free and serum-free protocol
needs to be developed. Spin embryoid body method was used for CD34+CD43+

hematopoietic progenitor cells generation and the resultant cells were further dif-
ferentiated using membrane-bound IL-21-expressing artificial antigen-presenting
cells [80, 81].The Kaufman group generated CAR-NK from human iPSCs. Human
iPSCs were transfected with a plasmid encoding scFv targeted to human mesothe-
lin, 2B4 costimulatory domain and CD3ζ chain. These genetically modified human
iPSCs were differentiated to functional CAR-NK cells. Compared with CAR-T
cells, CAR-NK cells displayed similar antitumor efficacy, but with less overall
toxicity [82]. Nowadays, the design strategy of fourth-generation CAR-T has also
been tested in CAR-NK generation [6].

Macrophages belong to the innate immune system with a high infiltration rate
and play indispensable roles in inflammation and the protection of our body
from outside invaders and tumor cells. The yolk sac, fetal liver, and bone mar-
row are all the sites for macrophage origination. Yolk sac-derived macrophages
not only form microglia in the brain but also populate the fetal liver which pro-
duces most of the self-renewing tissue-resident macrophages (TRMs) [83, 84].
After postnatal, macrophages originate from bone marrow myeloid progenitor
cells, occurring through differentiation of circulating monocytes in an MCSF-
or GMCSF-dependent manner [85]. In general, the life span of bone marrow-
derived macrophages is shorter than TRMs [86]. Macrophages are highly plastic
cells that perform diverse functions in different organs, including clearance of
cell debris, elimination of pathogens, modulation of inflammatory responses,
and tissue homeostasis maintenance [87]. Macrophages may undergo M1 or M2
polarization in different tissues encountering different microenvironment stimuli
and signals. M1 phenotype which is highly expressed in inflammatory cytokines
has strong anti-microbial and tumor activity, while M2 phenotype can promote
tumor growth and tissue remodeling [88, 89]. Macrophages can directly rec-
ognize outside invaders via pattern recognition receptors (PRRs). PRRs include
Toll-like receptors, NOD-like receptors, C-type lectin receptors, and cytoplasmic
proteins [90]. After receptors are activated, macrophages provoke intracellular sig-
nals to induce actin polymerization and phagocytic cup formation [91]. Then
macrophages phagocytose outside invaders or tumor cells and move to lymph
nodes to present antigens to T cells, subsequently triggering a series of T cells
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downstream responses. Compared with other immune cells, macrophages can pen-
etrate solid tumors easily and interact with almost all cellular components in the
tumor microenvironment, which endows them with profound advantages to be
developed into CAR-macrophage [88]. The feeder- and xeno-free protocol about
the differentiation from hPSCs to functional macrophages has been reported. First,
iPSCs were exposed to morphogens and cytokines such as BMP4 and VEGF step-
by-step, after specifying the lateral plate mesoderm organoids, the organoids were
then exposed to hematopoietic cytokines such as SCF, IL-6, and FLT3 to spec-
ify immune cells. The resultant mesoderm organoids will generate CD34+ FLK1+

endothelial cells (so-called hemogenic endothelium) that will derive the innate
immune cells including macrophages [92]. The hPSCs-derived macrophages have
the capacity of phagocytosis and polarization, and they can also secret cytokines in
response to LPS, indicating the same characteristic and function as macrophages
that develop naturally in the body. It has been reported that CAR-macrophages
could destroy the extracellular matrix (ECM) of the tumor and facilitate the
penetration of T cells into the tumor, thus playing an antitumor role [93]. The
Zhang group successfully established CAR-macrophages from human iPSCs. CAR
expression endowed iPSCs-derived antigen-dependent macrophages with enhanced
phagocytosis of tumor cells and in vivo antitumor activity [36]. The Gill group
evaluated the antitumor potential of CAR-macrophages in different animal models
and found that they could effectively reduce tumor burden. Moreover, in human-
ized mouse models, CAR-macrophages were demonstrated to strengthen T cell’s
antitumor activity and facilitate the formation of a pro-inflammatory environment.
For the intracellular domain of CAR-macrophages, the Gill group used CD3ζ chain
similar with CAR-T cells [59], while the Tonald Vale group applied the cytosolic
domains from Megf10 and FcRγ as the intracellular domain of CAR-macrophages,
which showed robust phagocytosis capacity [94] (Table 9.2).

9.4 Potential and Perspectives of CAR-Immune Cells
in Cancer Treatment

CAR-T therapy as the earliest CAR-immune cells therapy has achieved great
success and become a powerful immunotherapeutic source in hematologic can-
cer treatment. FDA has already approved four CAR-T-related drugs Kymriah,
Yescarta, Tecarta, and Breyanzi from 2017 to 2021 [97, 98]. Lately, CAR-NK
therapy has emerged as an alternative therapy option to CAR-T therapy. Com-
pared with CAR-T therapy, allogeneic CAR-NK therapy has reduced risk for
GVHD, CRS, and neurotoxicity [99, 100]. That is because activated T cells
predominantly produce more cytokines associated with CRS and severe neuro-
toxicity than activated NK cells [101]. CAR-NK cells may be able to eliminate
tumor cells via both CAR-dependent and NK cell receptor-dependent mechanisms.
Therefore, CAR-NK cells can form a second line of defense in case tumor cells
escape T cells recognition by MHC downregulation. The use of NK cell lines
such as NK92 and allogeneic NK cells with CAR engineered functions have been
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studied only recently [96]. Currently, there are more than 500 CAR-T-related
and 19 CAR-NK-related clinical trials being conducted in the world [98]. The
majority of CAR-T therapy under clinical evaluation still employs patient-derived
autologous T cells, whereas almost all CAR-NK therapy applies to cells from
allogeneic donors. The first large-scale clinical trial (NCT03056339) of CAR-NK
cells has shown promising and safe results in patients with CD19+ CLL and B
cell lymphoma [102]. Although CAR-NK therapy possesses multiple advantages
in comparison with CAR-T therapy, CAR-NK therapy still needs to be optimized
to improve efficacy. Nowadays, researchers have paid great interest in developing
CAR-macrophage for cancer treatment. FDA has already approved one CAR-
macrophage clinical trial, which is CT-0508 from CARISMA Therapeutics with
anti-HER2 CAR-macrophage in subjects with HER2 overexpressing solid tumors
(NCT04660929).

Allogeneic CAR-T therapy has monumental advantages compared with autol-
ogous approaches, such as a reduced expense and timesaving production cycle as
a result of the implementation of standardized and scaled-up manufacturing pro-
cesses, in which a host of CAR-T cells can be generated from healthy donors, even
the therapeutic CAR-T cells that have already been produced and stored in advance
before patients arrive. The applicable targets for allogeneic CAR-T therapy include
CD19 and CD22 in ALL and B cell lymphomas, respectively, CD30 in Hodgkin
lymphoma and anaplastic large cell lymphoma, BCMA, CS1 and CD38 in multi-
ple myeloma, and CD123, CD33, and CLL1 in AML [103]. Owing to the shorter
persistence of allogeneic CAR-T cells, the approaches, such as a systematic strat-
egy of redosing [34], the combination of CAR-T cells targeted different antigens
[104] and the combination of CAR-T therapy with immune checkpoint modulators
or cancer vaccine [105] can be employed to enhance CAR-T therapy efficacy. To
date, the efficacy of CAR-T in solid tumors is much less satisfactory than in hema-
tologic malignancies owing to the sturdy physical barriers, immune-suppressive
tumor milieu, and the heterogeneity of inner tumor cells. CAR-T cells coexpress-
ing catalase are able to promote their antioxidative capacity by metabolizing H2O2,
subsequently more resilient toward the harsh tumor microenvironment caused by
abundant reactive oxygen species (ROS), and perform superior over conventional
CAR-T cells [106]. Moreover, gene-editing approaches reduce the sensitivity of T
cells to negative immune checkpoints. The Moon group generated a new switch
receptor construct which introduced truncated extracellular domain of PD-1 and
costimulatory domain CD28 into CAR-T cells. They demonstrated that the applica-
tion of PD-1/CD28 can enhance the antitumor activity of CAR-T cells against solid
tumors [107]. The Brentjens group reported CAR-T cells which can secrete PD-1
blocking scFv increased antitumor activity [108]. Targeting chemokine receptors,
such as CXCR2 [109] and CCR2B [110], allows CAR-T cells migration to the
tumor site. The Dotti group revealed that CAR-T cells expressing heparanase, a
heparan sulfate-degrading enzyme, could enhance tumor penetration of T cells,
subsequently improving antitumor activity [28]. Constructing CAR-T cells which
can secrete cytokines further promote their survival or greater activity. CAR-T
cells secreting IL-12 [111], IL-18 [112], and IL-15 [113] have been reported to
optimize their antitumor activity by different mechanisms. There is a multitude
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Fig. 9.4 Hallmark of
modified CAR-T to target
solid tumor

of potential modifications for CAR-T therapy, and the proper modification needs
to be selected to implement based on the individual tumor characteristics, which
can provide effective ways to eradicate tumors independent of tumor-expressing
MHC. More advanced modification techniques, such as modular CAR and dual-
targeting approach, are being used in CAR-immune cells design to circumvent
therapy resistance and avoid GvHD (Fig. 9.4).

9.5 Future Prospects

CAR-immune cell therapy holds an unprecedented potential to treat cancers that
are incurable by conventional treatments. The number of clinical trials involv-
ing CAR-immune cell therapy is increasing exponentially, indicating more and
more researchers show great enthusiasm for this area [114]. Developing more
potent, more cost-effective, and safer CAR-immune cell therapy is the critical
goal in the future. Compared with primary immune cells, human pluripotent
stem cells-derived immune cells can be easily engineered and have the capac-
ity to proliferate indefinitely, enabling clonal selection and generation of enough
clonally-selected therapeutic cells for cancer treatment [115]. The application of
gene-editing approaches and fourth-generation CARs can generate CAR-immune
cells that are less prone to causing severe CRS [116] and subsequently optimize
therapy in terms of safety, cost and potency. However, there is no denying that the
generation and application of human pluripotent stem cells-derived CAR-T cells,
CAR-NK cells, and CAR-macrophages are still at the early stage. The manufactur-
ing processes from human pluripotent stem cells to functional CAR-immune cells
need to be standardized. Moreover, how to improve the efficacy of CAR-immune
cells in solid tumors is an inevitable hurdle. Another great challenge in this area is
the paucity of preclinical models to carry on the safety and efficacy evaluation of
CAR-immune cells before human studies or in response to safety issues that have
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been observed in early-phase clinical trials. More basic and translational research
need to be dedicated to this area to improve CAR-immune cell therapy and foster
new applications beyond oncology in autoimmunity, infectious diseases, and organ
transplantation.
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